<table>
<thead>
<tr>
<th>Strengths of Coating Type</th>
<th>Weaknesses of Cure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of rework</td>
<td>High VOC potential</td>
</tr>
<tr>
<td>Simple drying process</td>
<td>Difficult to maintain viscosity</td>
</tr>
<tr>
<td>Good moisture resistance</td>
<td>Requires close monitoring of solvent concentration, hence creates a 2-part scenario</td>
</tr>
<tr>
<td>High Fluorescence level</td>
<td>Flammability</td>
</tr>
<tr>
<td>Ease of viscosity adjustment</td>
<td>High probability of reversion under temperature and humidity stress conditions</td>
</tr>
</tbody>
</table>

Solvent Evaporation

- High VOC potential
- Difficult to maintain viscosity
- Requires close monitoring of solvent concentration, hence creates a 2-part scenario
- Flammability
- High probability of reversion under temperature and humidity stress conditions

Heat Cure

- Cure is dependent on thickness
- Component mass affects time and temperature of cure process
- Susceptible to cure inhibition
- Shrinkage (3% – 10%), potential for damaging fragile (e.g., glass) components
- Should be used with caution for low temperature components

UV Cure

- One component coatings require accurate application material to avoid shadowed areas
- Two part systems require meter mix equipment
- Some coatings are more difficult to rework
- UV Intensity and Wavelength effects cure
- Some secondary cure mechanisms require heat exposure