

Multi-Cure[®] 9037-F Blue Fluorescing Encapsulant/Wire Bond Adhesive with Secondary Heat Cure

APPLICATIONS

- Chip on Board
- · Chip on Flex
- · Chip on Glass
- · Wire Bonding

FEATURES

- UV/Visible Light Cure
- · Secondary Heat Cure
- · Flexible Encapsulant
- Shadow Area Performance
- Moisture and Thermal Resistance
- Blue Fluorescing

RECOMMENDED SUBSTRATES

- FR4
- Kapton
- Glass

Dymax Multi-Cure® 9037-F is an improved, resilient, chip-encapsulant material designed with a UV/Visible light and secondary heat-cure system, making it ideal for encapsulation applications where shadow areas are present. Dymax Multi-Cure materials contain no nonreactive solvents and cure upon exposure to light. Their ability to cure in seconds enables faster processing, greater output, and lower processing costs. When cured with Dymax light-curing spot lamps, focused-beam lamps, or flood lamps, they deliver optimum speed and performance for encapsulation requirements. Dymax lamps offer the ideal balance of UV and visible light for the fastest, deepest cures. This product is in full compliance with RoHS directives 2015/863/EU.

UNCURED PROPERTIES *		
Property	Value	Test Method
Solvent Content	No Nonreactive Solvents	N/A
Chemical Class	Acrylated Urethane	N/A
Appearance	Translucent Gel	N/A
Soluble in	Organic Solvents	N/A
Density, g/ml	1.06	ASTM D1875
Viscosity, cP (20 rpm)	55,000 (nominal)	ASTM D2556
Shelf Life @RT (22°C to 25°C) from Date of Manufacture	12 months	N/A

CURED MECHANICAL PROPERTIES *		
Property	Value	Test Method
Durometer Hardness	D40	ASTM D2240
Tensile at Break, MPa [psi]	5.8 [850]	ASTM D638
Elongation at Break, %	110	ASTM D638
Modulus of Elasticity, MPa [psi]	6.2 [900]	ASTM D638
Glass Transition Tg, °C	31	ASTM D5418
CTEα1, μm/m/°C	126	ASTM D831
CTEα2, μm/m/°C	171	ASTM E831

OTHER CURED PROPERTIES *		
Property	Value	Test Method
Refractive Index (20°C)	1.50	ASTM D542
Boiling Water Absorption, % (2 h)	2.0	ASTM D570
Water Absorption, % (25°C, 24 h)	0.9	ASTM D570
Linear Shrinkage, %	2.2	ASTM D2566

ELECTRICAL PROPERTIES *		
Property	Value	Test Method
Dielectric Constant (1 MHz)	4.31	ASTM D150
Dissipation Factor (1 MHz)	0.03	ASTM D150
Dielectric Breakdown Voltage, [V/mil]	900	ASTM D149
Volume Resistivity, ohm-cm	2.59E+10	ASTM D257
Surface Resistivity, ohm	9.44E+10	ASTM D257

DISPENSE EQUIPMENT RECOMMENDATIONS *			
Application	Manual	Semi-Automated	Fully Automated
Dots/Beads	SD-100	Model 400 Valve	eco-PEN450

CURING EQUIPMENT RECOMMENDATIONS *			
Process Method	Spot Lamp	Flood Lamp	Conveyor
LED Curing/Wavelength	BlueWave® MX-150 PrimeCure® (385 nm)	BlueWave® AX-550 PrimeCure® (385 nm)	UVCS Conveyor with LED Floods
Broad Spectrum	BlueWave® 200	5000-ECE	UVCS Conveyor

ADHESION	
Substrate	Recommendation
Aluminum	0
FR4	~
PCB Board	~

[✓] Recommended o Limited Applications

st Requires Surface Treatment (e.g. plasma, corona treatment, etc.)

ELECTRONIC ASSEMBLY MATERIALS 9037-F Product Data Sheet

CURING GUIDELINES

Fixture time is defined as the time to develop a shear strength of 0.1 N/mm² [10 psi] between glass slides. Actual cure time typically is 3-to-5 times fixture time.

Dymax Curing System (Intensity)	Fixture Time or Belt Speed A
2000-EC (50 mW/cm ²) ^B	1
5000-EC (200 mW/cm ²) ^B	1
BlueWave® 200 (10 W/cm ²) ^B	0.6
BlueWave® MX-150 PrimeCure® 385nm (10W/cm ²) ^c	0.4 s
UVCS Conveyor with one 5000-EC (200 mW/cm ²) ^D	8.0 m/min [26 ft/min]
UVCS Conveyor with Fusion F300S (2.5 W/cm ²) ^D	8.2 m/min [27 ft/min]

A Curing through light-blocking substrates may require longer cure times if they obstruct wavelengths used for light curing (320-400 nm for UV light curing, 320-450 nm for UV/visible light curing). These fixture times/belt speeds are typical for curing thin films through 100% light-transmitting substrates.

Full cure is best determined empirically by curing at different times and intensities, and measuring the corresponding change in cured properties such as tackiness, adhesion, hardness, etc. Full cure is defined as the point at which more light exposure no longer improves cured properties. Higher intensities or longer cures (up to 5x) generally will not degrade Dymax light-curable materials.

SECONDARY HEAT CURE

Heat can be used as a secondary cure mechanism where the adhesive cannot be cured with light. Light curing must be done prior to heat cure. The following heat-cure schedule may be used:

Temperature	Time*
110°C [230°F]	60 minutes
120°C [250°F]	30 minutes
150°C [300°F]	15 minutes

*Note: Actual heat cure time may vary due to part configuration, volume of adhesive applied, and oven efficiency.

Dymax recommends that customers employ a safety factor by curing longer and/or at higher intensities than required for full cure. Although Dymax Application Engineering can provide technical support and assist with process development, each customer ultimately must determine and qualify the appropriate curing parameters required for their unique application.

OPTIMIZING PERFORMANCE AND HANDLING

- 1. This product cures with exposure to UV and visible light. Exposure to ambient and artificial light should be kept to a minimum before curing. Dispensing components including needles and fluid lines should be 100% light blocking, not just UV blocking.
- 2. All surfaces in contact with the material should be clean and free from flux residue, grease, mold release, or other contaminants prior to dispensing the material.
- 3. Cure speed is dependent upon many variables, including lamp intensity, distance from the light source, required depth of cure, thickness, and percent light transmission of components between the material and light source.
- 4. Oxygen in the atmosphere may inhibit surface cure. Surfaces exposed to air may require high-intensity (>100 mW/cm²) UV light to produce a dry surface cure. Flooding the curing area with an inert gas, such as nitrogen, can also reduce the effects of oxygen inhibition.
- 5. Parts should be allowed to cool after cure before testing and subjecting to any loads or electrical testing.
- 6. Light curing generally produces some heat. If necessary, cooling fans can be placed in the curing area to reduce the heating effect on components.
- 7. At the point of curing, an air exhaust system is recommended to dissipate any heat and vapors formed during the curing process.

DISPENSING THE MATERIAL

This material may be dispensed with a variety of manual, semi-automated and fully automated fluid delivery systems. Small-area applications, including beads and small dots, can be achieved using hand-held Dymax dispensing systems like our SD-100 syringe dispenser and our Model 400 needle valve systems. The value system can be used in a manual, semi-automated, or fully automated application. Dymax has several other dispensing systems that may be suitable for use with our adhesive materials. Questions relating to and defining the best fluid delivery system and curing equipment for specific applications should be discussed with the Dymax Application Engineering Team.

B Intensity was measured over the UVA range (320-395 nm) using a Dymax ACCU-CAL™ 50 Radiometer.

c Intensity was measured over the UVA/Visible range (350-450 nm) using a Dymax ACCU-CAL™ 50-LED Radiometer.

D Intensity was measured over the UVA range (320-395 nm) using the Dymax ACCU-CAL™160 Radiometer. At 53 mm [2.1 in] focal distance. Maximum speed of conveyor is 8.2 m/min [27 ft/min].

ELECTRONIC ASSEMBLY MATERIALS 9037-F Product Data Sheet

STORAGE AND SHELF LIFE

Store the material in a cool, dark place when not in use. Do not expose to light. This product may polymerize upon prolonged exposure to ambient and artificial light. Keep covered when not in use. This material shelf life noted on page 1 of this document, when stored between 10°C (50°F) and 32°C (90°F) in the original, unopened container.

CLEAN UP

Uncured material may be removed from dispensing components and parts with organic solvents. Cured material will be impervious to many solvents and difficult to remove. Cleanup of cured material may require mechanical methods such as ultrasonic bath, water jet, vacuum tweezers, air knife and/ or warming to aid in the removal.

GENERAL INFORMATION

This product is intended for industrial use only. Keep out of the reach of children. Avoid breathing vapors. Avoid contact with skin, eyes, and clothing. Wear impervious gloves. Repeated or continuous skin contact with uncured material may cause irritation. Remove material from skin with soap and water. Never use organic solvents to remove material from skin and eyes. For more information on the safe handling of this material, please refer to the Safety Data Sheet before use.

The data provided in this document are based on historical testing that Dymax performed under laboratory conditions as they existed at that time, and are for informational purposes only. The data are neither specifications nor guarantees of future performance in a particular application. Dymax does not guarantee that this product's properties are suitable for the user's intended purpose.

Numerous factors—including, without limitation, transport, storage, processing, the material with which the product is used, and the ultimate function or purpose for which the product was obtained—may affect the product's performance and/or may cause the product's actual behavior to deviate from its behavior in the laboratory. None of these factors are within Dymax's control. Conclusions about the behavior of the product under the user's particular conditions, and the product's suitability for a specific purpose, cannot be drawn from the information contained in this document.

It is the user's responsibility to determine (i) whether a product is suitable for the user's particular purpose or application and (ii) whether it is compatible with the user's intended manufacturing process, equipment, and methods. Under no circumstances will Dymax be liable for determining such suitability or compatibility. Before the user sells any item that incorporates Dymax's product, the user shall adequately and repetitively test the item in accordance with the user's procedures and protocols. Unless specifically agreed to in writing, Dymax will have no involvement in, and shall under no circumstances be liable for, such testing.

Dymax makes no warranties, whether express or implied, concerning the merchantability of this product or its fitness for a particular purpose. Nothing in this document should be interpreted as a warranty of any kind. Under no circumstances will Dymax be liable for any injury, loss, expense or incidental or consequential damage of any kind allegedly arising in connection with the user's handling, processing, or use of the product. It is the user's responsibility to adopt appropriate precautions and safeguards to protect persons and property from any risk arising from such handling, processing, or use.

The specific conditions of sale for this product are set forth in Dymax's Conditions of Sale which are available at https://dymax.com/resources/sales-terms-conditions. Nothing contained herein shall act as a representation that the product use or application is free from patents owned by Dymax or any others. Nothing contained herein shall act as a grant of license under any Dymax Corporation Patent.

Except as otherwise noted, all trademarks used herein are trademarks of Dymax. The "®" symbol denotes a trademark that is registered in the U.S. Patent and Trademark Office.

The contents of this document are subject to change. Unless specifically agreed to in writing, Dymax shall have no obligation to notify the user about any change to its content.

CONTACT DYMAX

www.dymax.com

Americas

USA | +1.860.482.1010 | info@dymax.com

Europe

Germany | +49 611.962.7900 | info_de@dymax.com | reland | +353 21.237.3016 | info_ie@dymax.com

Asia

Singapore | +65.67522887 | info_ap@dymax.com Shanghai | +86.21.37285759 | dymaxasia@dymax.com Shenzhen | +86.755.83485759 | dymaxasia@dymax.com Hong Kong | +852.2460.7038 | dymaxasia@dymax.com Korea | +82.31.608.3434 | info_kr@dymax.com